登陆注册
4707200000297

第297章

By SIR GEORGE DARWIN, K.C.B., F.R.S.

Plumian Professor of Astronomy and Experimental Philosophy in the University of Cambridge.

In ordinary speech a system of any sort is said to be stable when it cannot be upset easily, but the meaning attached to the word is usually somewhat vague. It is hardly surprising that this should be the case, when it is only within the last thirty years, and principally through the investigations of M. Poincare, that the conception of stability has, even for physicists, assumed a definiteness and clearness in which it was previously lacking. The laws which govern stability hold good in regions of the greatest diversity; they apply to the motion of planets round the sun, to the internal arrangement of those minute corpuscles of which each chemical atom is constructed, and to the forms of celestial bodies. In the present essay I shall attempt to consider the laws of stability as relating to the last case, and shall discuss the succession of shapes which may be assumed by celestial bodies in the course of their evolution. I believe further that homologous conceptions are applicable in the consideration of the transmutations of the various forms of animal and of vegetable life and in other regions of thought. Even if some of my readers should think that what I shall say on this head is fanciful, yet at least the exposition will serve to illustrate the meaning to be attached to the laws of stability in the physical universe.

I propose, therefore, to begin this essay by a sketch of the principles of stability as they are now formulated by physicists.

I.

If a slight impulse be imparted to a system in equilibrium one of two consequences must ensue; either small oscillations of the system will be started, or the disturbance will increase without limit and the arrangement of the system will be completely changed. Thus a stick may be in equilibrium either when it hangs from a peg or when it is balanced on its point. If in the first case the stick is touched it will swing to and fro, but in the second case it will topple over. The first position is a stable one, the second is unstable. But this case is too simple to illustrate all that is implied by stability, and we must consider cases of stable and of unstable motion. Imagine a satellite and its planet, and consider each of them to be of indefinitely small size, in fact particles; then the satellite revolves round its planet in an ellipse. A small disturbance imparted to the satellite will only change the ellipse to a small amount, and so the motion is said to be stable. If, on the other hand, the disturbance were to make the satellite depart from its initial elliptic orbit in ever widening circuits, the motion would be unstable. This case affords an example of stable motion, but I have adduced it principally with the object of illustrating another point not immediately connected with stability, but important to a proper comprehension of the theory of stability.

The motion of a satellite about its planet is one of revolution or rotation. When the satellite moves in an ellipse of any given degree of eccentricity, there is a certain amount of rotation in the system, technically called rotational momentum, and it is always the same at every part of the orbit. (Moment of momentum or rotational momentum is measured by the momentum of the satellite multiplied by the perpendicular from the planet on to the direction of the path of the satellite at any instant.)Now if we consider all the possible elliptic orbits of a satellite about its planet which have the same amount of "rotational momentum," we find that the major axis of the ellipse described will be different according to the amount of flattening (or the eccentricity) of the ellipse described. Afigure titled "A 'family' of elliptic orbits with constant rotational momentum" (Fig. 1) illustrates for a given planet and satellite all such orbits with constant rotational momentum, and with all the major axes in the same direction. It will be observed that there is a continuous transformation from one orbit to the next, and that the whole forms a consecutive group, called by mathematicians "a family" of orbits. In this case the rotational momentum is constant and the position of any orbit in the family is determined by the length of the major axis of the ellipse;the classification is according to the major axis, but it might have been made according to anything else which would cause the orbit to be exactly determinate.

I shall come later to the classification of all possible forms of ideal liquid stars, which have the same amount of rotational momentum, and the classification will then be made according to their densities, but the idea of orderly arrangement in a "family" is just the same.

We thus arrive at the conception of a definite type of motion, with a constant amount of rotational momentum, and a classification of all members of the family, formed by all possible motions of that type, according to the value of some measurable quantity (this will hereafter be density)which determines the motion exactly. In the particular case of the elliptic motion used for illustration the motion was stable, but other cases of motion might be adduced in which the motion would be unstable, and it would be found that classification in a family and specification by some measurable quantity would be equally applicable.

同类推荐
  • Historical Lecturers and Essays

    Historical Lecturers and Essays

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 粤逆纪略

    粤逆纪略

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 太平圣惠方

    太平圣惠方

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 南天痕

    南天痕

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 石隐园藏稿

    石隐园藏稿

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
热门推荐
  • 守夜制空

    守夜制空

    《守夜制空》是当下最热门的小说,楚白也是这本书忠实的读者,某个狂风暴雨之夜,楚白一觉醒来却是到了这本书中的世界,这是一个无比黑暗说世界,每当黑暗降临,无数卑鄙丑陋的东西都会暗滋生长,书中的主角沈秋是一位守夜人,而楚阳也会替代他,成为新的守夜人!
  • 每天读一点世界文化常识

    每天读一点世界文化常识

    《每天读一点世界文化常识》是一部世界文化百科全书,从人类历史、衣食住行、文学艺术、政治经济、军事技术、风俗传说、名胜古迹七个方面讲解世界文化常识,展示世界文化发展的轨迹,为读者提供科学性、趣味性、知识性的阅读体验和感受,使大家尽情畅游在辽阔深邃的世界文化知识的海洋中。
  • 快穿系统:boss,有点甜

    快穿系统:boss,有点甜

    “我叶云殇,从来没有对您撒过谎,所以阿姨您相信我吧!我们的产品绝对放心。”打了无数电话……
  • 零点爱情

    零点爱情

    前世五百次的回眸换来今生的一次擦肩而过,今生的无数次偶遇换取一生的同床共枕,缘乃天定,份靠人为…四大家族多年在商场上就位居榜首,可谓是翻手为云,覆手为雨,传言四大家族一动,全世界一阵,多少官场和商场都要礼让三分。四公子亲临,众女子失神,四大家族继承人东、南、西、北四少爷如玉如风、张扬不羁、风流潇洒、冷傲淡雅、各具一色,举世无双,是多少贵族名媛所追逐的梦想,然而四少爷的婚姻却不由自主,加注了太多的责任、名利、权势,面对这样的婚姻,又将展开一段怎样的恋情…她路见不平,拔刀相助、善良但不温柔,爱财如命,一介平民,有一份还算可以的工作,是省长身边的保镖,但与上流社会的名媛贵族还是天地之差,其实不然,倾国倾城、温柔善良、有生意头脑、随性随和、自信却不自傲、是沈氏集团的千金小姐,真是让人震惊!贵族的少爷、小姐是多少人羡慕、崇拜的焦点,其实他们的苦衷也是不言而喻的,繁华的外表下又有多少人勾心斗角、争名夺利、自相鱼肉,人人如此现实,我又岂能坐以待毙…小凡走在路上的奇遇小凡:要么道歉,要么赔条裙子来东景:感情本少爷今天是遇上碰瓷的了小凡:居然连道歉都不会的人,不过是披了一张华丽丽的表皮,徒有虚名而已,,还真是自高自大的自大狂。东景:我看你不紧是碰瓷的,还想用这种办法吸引我的注意吧,这叫什么,欲擒故纵、还是炫石为玉,不过你不是我的菜,你看看你的身材,啧啧…平的汽车走上去都能让你吓的熄火了,还是回家多安几面镜子照照吧,东景脚踩油门,走出了好远。小凡气的直跺脚,自大狂,没礼貌、花孔雀、爱骄傲,小心哪天落在我手里等让你好看,等本姑娘那天头发齐腰小心勒死你!
  • 王爷的双面王妃

    王爷的双面王妃

    她,最善易容,其技已出神入化。嫁入王府三年,她只见过自己的夫君三次面。在每年王府庆典之时,她高坐于他的身侧,却从未得到他一眼的注视。平凡如她,竟让他“忘”了自己还有一位王妃!然,没有人知晓,在她褪下那层面具之后,竟是怎样的倾城绝色!她带着“目的”嫁进王府,三年时间,就在她以为她的目的即将达到,而她也终于可以离开这里时——一次偶然的意外,竟让他看见了面具之下的她!从此,一切开始脱轨。。。除了大婚那夜,三年间不曾踏进她屋子的他,突然开始频繁造访,并美其名曰:本王只是略尽夫君之责!他说:“爱妃有一张让人平凡忽忘的脸孔,却为何有一双璨若珍珠的明眸呢?”那般慵懒闲适,却暗含锋芒。她说:“多谢王爷称赞!妾身明眸再美,也比上王爷那天生比女子还美的桃花翦眼。”那般乖巧柔顺,却是明褒暗贬。恩怨情仇,国仇家恨,一夕之间,瞬息万变。在她的计划即将成功之时,她的仇人——那个杀害她全家的仇人,却是被她的夫君所救!这一切,来的突然而震憾!她毅然离开王府,却不成想,心中早已有了牵挂。但是牵挂越多,仇恨越深!她把所有的仇恨,皆转自到他的身上!发誓,不杀了他,难以瞑目!——————————————————————————文文自己的完结文:《嫂嫂,你怀的宝宝是我的!》这是文文的家:http://m.wkkk.net/wrxlty(里面记录着文文对写文,对生活,对感情的一些感受,有兴趣的亲们可以过去看看。(*^__^*)...)这是文文在潇湘的空间,亲们有空也可以去逛逛哦!http://m.wkkk.net/1368045————————推荐文文:《英雄难过囧女关》甜味白开水《滥情公爵虐情妃》莫離莫棄《魅惑黑道狼君》风之孤鸿《娘子,你别太嚣张》夜初《蛮妻休夫》玲珑天心《护士王妃》花花非公子《灰姑娘的天价宝宝》潇湘小笔推荐一部很喜欢的文:《侍宴女》转身文文的Q:931687945(敲门砖:女主的名字)推荐新文:新文《麻辣俏红娘》,各位多多支持哈!
  • 九州朝龙

    九州朝龙

    莽莽大道,轻描淡写霸江湖;红尘粉海,香酥玉骨撩君心。只身对敌,万马军中只一笑;沉浮宦海,一杆长枪镇军国。放眼江湖,众生碌碌谁与斗;踏遍闺阁,无意却把芳心获。一柄长剑,天下武林拜尊皇;高手败尽,九霄云外我独孤。生在江湖,却不被其所容;无心权利,却不能独善其身。一次次在阴谋和仇恨中死去,又从死亡中觉醒。
  • 胎楼

    胎楼

    父亲死的时候,对我说,在他头七夜里,如果有人晚上来敲门,千万不要开门;开了门也千万别放人进来;放人进来了也别跟他走。只要我熬过他的头七夜,可保一生平安。可那一夜,我跟他走了……
  • 肥胖病食疗谱(美食与保健)

    肥胖病食疗谱(美食与保健)

    民以食为天。我们一日三餐的饭菜不仅关系我们的生命,更关系我们的健康。因此,我们不但要吃饱吃好,还要吃出营养、吃出健康、吃出品味,吃出高水平的生活质量。
  • 农女小萌妃

    农女小萌妃

    【传说中的文案】风华绝代的墨王爷十分纯情,机不可失失不再来!下了雨丛林中会长蘑菇,小红萝就屁颠屁颠挎着小篮子去采。顾府的墨王爷喜欢吃蘑菇,小红萝又欢欢喜喜拿到王府门口去卖。一回生二回熟,王爷见她机灵可爱,叫她进了王府做烧火丫鬟。你来我往,又见她心灵手巧,就让她做了陪寝丫头。陪寝就陪寝呗,像她这样赔上自己小命的,也只是少数。风呼呼在耳畔回响,她脸朝下做自由落体运动,往事如浮云飘过。娘啊,这种时候还能出口放狠话的,一定是还没死到家!!!【一墨二红第一话】白衣公子:“是谁,惊扰本君梦境,还试图掰弯本君命根?”红萝:“叫什么叫,本姑娘只是来采个蘑菇。”白衣公子:“噢,原来是个不知死活的小丫头。”红萝:“吼什么吼,虽然本姑娘年纪尚小,但命中注定很有姿色。”白衣公子:“我的蘑菇不许你采。”红萝:“好,不许南山采,就去北山采。”白衣公子:“大胆!”【一墨二红第二话】红萝:“王爷,你不要和飘飘姑娘好,飘飘美人儿是个坏坯子,早就有男人了,她跟着你,只为分你的家产。”顾墨:“那小萝箩,你跟在我身边,又是为了什么?”红萝:“万一家产都分完了,我就乘火打劫,把你捡回去。”顾墨:“万一家产没分完呢?”红萝:“那我就死赖着不走。”顾墨:“…”【一墨二红第三话】红萝:“墨墨,大王妃说她不喜欢我。”顾墨:“哦,为什么?”红萝:“她说没我长得漂亮,嫉妒我。”顾墨:“小萝箩,她讨厌你,这很正常。”红萝:“可是她说要干掉我!”顾墨:“萝箩,她干不掉你,只有我才能…嗯,欺负你。”红萝:“…”【风流君的话】风流君又一抽风作品,走的是时下最流行的暖萌路线,但不慎走偏;思绪跳跃得厉害,偶尔脱线;有时故作正经,煽煽小感情,涉及朝堂之争。身心干净,至于结局…红萝说:“本姑娘福大命大,又长得如此美貌,王爷只让我一个人侍寝,侍寝一辈子,你说是个什么结局?”
  • 我以为自己能行

    我以为自己能行

    简介什么的都不存在啦!不同风格的书,嗯,很强大!世界崩啊崩…