登陆注册
5590800000046

第46章 Malthus(4)

Cobbett's language was rougher than Southey's;but the poet-laureate and the author of 'two-penny trash'were equally vehement in sentiment.Malthus,on the other hand,was accepted by the political economists,both Whig and Utilitarian.Horner and Mackintosh,lights of the Whigs,were his warm friends as well as his disciples.He became intimate with Ricardo,and he was one of the original members of the Political Economy Club.He took abuse imperturbably;was never vexed 'after the first fortnight'by the most unfair attack;and went on developing his theories,lecturing his students,and improving later editions of his treatise.Malthus died on 23rd December 1834.

II.THE RATIOS

The doctrine marks a critical point in political economy.Malthus's opponents,as Mr.Bonar remarks,15attacked him alternately for propounding a truism and for maintaining a paradox.A 'truism'is not useless so long as its truth is not admitted.

It would be the greatest of achievements to enunciate a law self-evident as soon as formulated,and yet previously ignored or denied.Was this the case of Malthus?Or did he really startle the world by clothing a commonplace in paradox,and then explain away the paradox till nothing but the commonplace was left?

Malthus laid down in his first edition a proposition which continued to be worried by all his assailants.

Population,he said,when unchecked,increases in the geometrical ratio;the means of subsistence increase only in an arithmetical ratio.Geometrical ratios were just then in fashion.16Price had appealed to their wonderful ways in his arguments about the sinking fund;and,had pointed out that a penny put out to 5per cent compound interest at the birth of Christ would,in the days of Pitt,have been worth some millions of globes of solid gold,each as big as the earth.Both Price and Malthus lay down a proposition which can easily be verified by the multiplication-table.

If,as Malthus said,population doubles in twenty-five years,the number in two centuries would be to the present number as 256to 1,and in three as 4096to 1.If,meanwhile,the quantity of subsistence increased in 'arithmetical progression,'the multipliers for it would be only 9and 13.It follows that,in the year 2003,two hundred and fifty-six persons will have to live upon what now supports nine.So far,the case is clear.But how does the argument apply to facts?For obvious reasons,Price's penny could not become even one solid planet of gold.Malthus's population is also clearly impossible.That is just his case.The population of British North America was actually,when he wrote,multiplying at the assigned rate.What he pointed out was that such a rate must somehow be stopped;and his question was,how precisely will it be stopped?The first proposition,he says 17(that is,that population increased geometrically),'I considered as proved the moment that the American increase was related;and the second as soon as enunciated.'To say that a population increases geometrically,in fact,is simply to say that it increases at a fixed rate.The arithmetical increase corresponds to a statement which Malthus,at any rate,might regard as undeniable;namely,that in a country already fully occupied,the possibility of increasing produce is restricted within much narrower limits.In a 'new country,'as in the American colonies,the increase of food might proceed as rapidly as the increase of population.Improved methods of cultivation,or the virtual addition of vast tracts of fertile territory by improved means of communication,may of course add indefinitely to the resources of a population.But Malthus was contemplating a state of things in which the actual conditions limited the people to an extraction of greater supplies from a strictly limited area.Whether Malthus assumed too easily that this represented the normal case may be questionable.At any rate,it was not only possible but actual in the England of the time.His problem was very much to the purpose.His aim was to trace the way in which the population of a limited region is prevented from increasing geometrically.If the descendants of Englishmen increase at a certain rate in America,why do they not increase equally in England?That,it must be admitted,is a fair scientific problem.Finding that two races of similar origin,and presumably like qualities,increase at different rates,we have to investigate the causes of the difference.

同类推荐
  • 鸡谱

    鸡谱

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 赠崔员外

    赠崔员外

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 莊靖先生遺集

    莊靖先生遺集

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 道法心传

    道法心传

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 贯休应梦罗汉画歌

    贯休应梦罗汉画歌

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
热门推荐
  • 荒岛求生之杀出重围

    荒岛求生之杀出重围

    一场意外,我和我的朋友乘坐的船发生了触礁,我们被困在一座岛上,为了食物,为了生存,他们尔虞我诈,互相抢掠,互相厮杀,人性的丑陋变得赤裸裸,但是我不会屈服,为了我的朋友和我爱的人,我要变强,我要变强,我要——群号:426476388
  • 针锋天下

    针锋天下

    沈星空,生于贫困之家,虽然勉强上了医科大学,但生活仍然窘迫尴尬,受尽了身边人的白眼。一次倒霉的遭遇,他与一只变异黄蜂无意间狭路相逢,结果胜者死去,败者却得到一根神奇的蜂尾金针,从此他的命运华丽转身,强悍的人生无需解释。【起点第二编辑组】【桃花派都市小说2010初冬巨献】【四年七部全本小说,八百万字钻石信誉保证】【郑重声明:桃花老张小说唯一授权发布网站为起点中文网】【敬请支持原创,远离盗版】
  • 神秘的照片

    神秘的照片

    在众多的摄影杂志中,最早创刊的《相机·日本》一年一度的摄影大奖赛最受欢迎。它的奖金为30万元。在这个物价飞涨的时代这点奖金似乎不那么诱人。但它之所以受到业内人士的欢迎和重视是因为每年的大赛可以征集到国内一流的作品。入选者也颇为荣耀。特别是社会派的摄影师们大多是这个大赛的获奖者。当年活跃在越南战场,进行大量的现场照片报道推动反战活动、战后又以公害为题呼吁环境保护的K氏就是获奖者之一。在今年的第30届大奖赛中收到了彩色、黑白照片2000多张作品。
  • 迷城

    迷城

    《迷城》讲述在迷宫一般的南明城中,连环命案接连发生,在解案的过程中,却发现人性复杂成谜。《夏娃的秘密》展示了克隆时代的爱情奇迹:身处二十一世纪的现代科学家穿越时空去往十四万三千前,意外爱上线粒体夏娃,他们的后代遍布地球上每一个角落。《伊甸园里的半局棋》构想了人类之初智慧的形成以及斗争分化之始。《迷城》收录蔡骏早年(2001.12-2008.8)中短篇小说十一篇。包括《迷城》《夏娃的秘密》《侯赛因》《最后的战役》《白头宫女》《荒村》等。
  • 闲话三国

    闲话三国

    《李国文文集(第11卷)?随笔2:闲话三国》为李国文随笔之一。主要内容素以直面现实,关注众生,剖析人生百态为特点;近二十年来,虽沉潜于历史,但他的目光也并未脱离当下,用嬉笑怒骂、幽默冷辣的文字,表达对历史、社会和人生的理解,自有一种严肃和深透。
  • 良霞

    良霞

    前年过年我回乡,她缓缓经过我家门,憔悴面容上露出淡淡的微笑,再一次击中我,一如当年在渡船上。她用她的执着写着跟我们这快速变化的生活完全不同的故事。她在妥协中体悟到了某些真相:人被剥夺一切之后,明知到不了任何要去的地方时,我们如何应对?如何透过表象看到自己的内里,以及他人,看到整个时代,并真正对生命敬畏以及同情。她的魅力并不是在她年轻美丽的时候,恰恰在她看透前路却仰面接纳之时,她的美四处漫溢,令人倾倒。灵魂的升华来自自然、河流,岁月的流逝和我们自身的品德。人世间最大的光荣是:当我们无力反抗时,承受,不点破,恰恰是获得自由的方式。
  • 位面萌商

    位面萌商

    林萌萌觉得自己上辈子肯定是有钱人家的大小姐,要不然对于败家这个事业怎么如此在行!工作三年却负债累累,过得比学生时代还穷。看着储蓄卡上仅剩的79块钱,她想假如人生可以重来,她一定要成为一个大商人,坐拥无数资产,想买啥就买啥,做一个既会败家又会赚钱的人生赢家!一觉醒来,“叮,您的位面交易系统已上线”,从此,林萌萌在发家致富的道路上一去不复返。
  • 爱跳舞的女人

    爱跳舞的女人

    丁小孩十五岁那年,父亲出车祸死了。当时丁小孩正准备中考,想考高中,以后顺理成章读大学。吴小爱阻止说,考个什么高中啊,你还是抓紧时间找个饭碗要紧。她让丁小孩报考一所电子中专,三年中专毕业,马上可以就业挣钱。吴小爱是丁小孩的母亲。这个一向无忧无虑的女人,自从丈夫丁大海出车祸死后,看不出她有多深的悲哀,因为丁大海活着时,他们经常吵架,每次吵架时,她就威胁丁大海说要离婚。现在丁大海死了,婚也不用离了,所以吴小爱看上去仍和以前一样,该吃就吃,该玩就玩。吴小爱有两个爱好,一个是打麻将,一个是跳舞。
  • 尊胜菩萨所问一切诸法入无量门陀罗尼经

    尊胜菩萨所问一切诸法入无量门陀罗尼经

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 无顾不论凌云

    无顾不论凌云

    凌家覆灭,凌家大小姐沦为阶下囚。重生后,凌宫芸发誓要改变凌家结局。大小姐回归,说好了让我来撕仇敌的呢,怎么仇敌被你们撕了?说好的让我来爱你们,怎么就变成了团宠?父母宠,哥哥宠,弟弟也宠,要命的是后面还有个紧追不舍的男人。而在他们认为一切尘埃落定之时,却发现有更大的责任等着他们……