登陆注册
5294700000006

第6章

26.As oft as you talk of finite quantities inconsiderable in practice,Sir Isaac Newton disowns your apology.Cave ,saith he,intellexeris finitas .And,although quantities less than sensible may be of no account in practice,yet none of your masters,not will even you yourself,venture to say that they are of no account in theory and in reasoning.The application in gross practice is not the point questioned,but the rigour and justness of the reasoning.And it is evident that,be the subject ever so little,or ever so inconsiderable,this doth not hinder but that a person treating thereof may commit very great errors in logic;which logical errors are in nowise to be measured by the sensible or practical inconveniences thence arising,which,perchance,may be none at all.It must be owned that,after you have misled and amused your less qualified reader (as you call him),you return to the real point in controversy,and set yourself to justify Sir Isaac's method of getting rid of the above-mentioned rectangle.And here I must intreat the reader to observe how fairly you proceed.

27.First then you affirm (p.44),"that neither in the demonstration of the rule for finding the fluxion of the rectangle of two flowing quantities,nor in anything preceding or following it,is any mention,so much as once,made of the increment of the rectangle of such flowing quantities.''Now I affirm the direct contrary.For,in the very passage by you quoted in this same page,from the first case of the second lemma of the second book of Sir Isaac's Principles,beginning with Rectangulum quodvis motu perpetuo auctum ,and ending with igitur laterum incrementis totis a and b generatur rectanguli incrementum aB +bA.Q.E.D.in this very passage,I say,is express mention made of the increment of such rectangle.As this is matter of fact,I refer it to the reader's own eyes.Of what rectangle have we here the increment?

Is it not plainly of that whose sides have a and b for their incrementa tota ,that is,of AB .Let any reader judge whether it be not plain from the words,the sense,and the context,that the great author in the end of his demonstration understands his incrementum as belonging to the rectangulum quodvis at the beginning.Is not the same also evident from the very lemma itself prefixed to the demonstration?

The sense whereof is (as the author there explains it),that if the moments of the flowing quantities A and B are called a and b ,then the momentum vel mutatio geniti rectanguli AB will be aB +bA .Either therefore the conclusion of the demonstration is not the thing which was to be demonstrated,or the rectanguli incrementum aB +bA belongs to the rectangle AB .

28.All this is so plain that nothing can be more so;and yet you would fain perplex this plain case by distinguishing between an increment and a moment.But it is evident to every one who has any notion of demonstration that the incrementum in the conclusion must be the momentum in the lemma;and to suppose it otherwise is no credit to the author.It is in effect supposing him to be one who did not know what he would demonstrate.But let us hear Sir Isaac's own words:Earum (quantitatum scilicet fluentium)incrementa vel decrementa momentanea sub nomine momentorum intelligo .And you observe yourself that he useth the word moment to signify either an increment or decrement.Hence,with an intention to puzzle me,you propose the increment and decrement of AB ,and as which of these I would call the moment?The case you say is difficult.My answer is very plain and easy,to wit,Either of them.

You,indeed,make a different answer;and from the author's saying that by a moment he understands either the momentaneous increment or decrement of the flowing quantities,you would have us conclude,by a very wonderful inference,that his moment is neither the increment nor decrement thereof.

Would it not be as good an inference,because a number is either odd or even,to conclude it is neither?Can any one make sense of this?Or can even yourself hope that this will go down with the reader,how little soever qualified?It must be owned,you endeavour to intrude this inference on him,rather by mirth and humour than by reasoning.Your are merry,I say,and (p.46)represent the two mathematical quantities as pleading their rights,as tossing up cross and pile,as disputing amicably.You talk of their claiming preference,their agreeing,their boyishness,and their gravity.And after this ingenious digression you address me in the following words -Believe me,there is no remedy,you must acquiesce.But my answer is that I will neither believe you nor acquiesce;there is a plain remedy in common sense;and,to prevent surprise,I desire the reader always to keep the controverted point in view,to examine your reasons,and be cautious how he takes your word,but most of all when you are positive,or eloquent,or merry.

同类推荐
  • 五大虚空藏菩萨速疾大神验秘密式经

    五大虚空藏菩萨速疾大神验秘密式经

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 北户录

    北户录

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 屈原全集

    屈原全集

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 伤寒补例

    伤寒补例

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 平书订

    平书订

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
热门推荐
  • 昨夜你把星辰藏在我梦里

    昨夜你把星辰藏在我梦里

    17岁的穆念从没想过,这一年她遇到的男孩会是她这一生的执念,而18岁的董墨泽也从来都不知道,原来真的能有一个人喜欢一个人到舍弃自己的一切
  • 玉景九天金霄威神王祝太元上经

    玉景九天金霄威神王祝太元上经

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 蟹谱

    蟹谱

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 每天一堂生活经济课

    每天一堂生活经济课

    在我们的日常生活中充满了经济学的运用,经济学是每个希望生活更幸福的人的学问。经济学在社会生活各个领域的广泛应用以及经济学规律对生活的巨大作用。本书的文章大多以短论为主,针对经济与社会生活中发生的一些引起作者注意的事件,探讨经济中的一些问题。文章既有经济学之内的经典解释,又有经济学之外的通俗剖析,文词符合作者一贯的风格,流畅简洁,大处着眼,小处入微,让读者在坐而论道中轻松地领会经济学的高深内容。
  • 痞王逼婚:绝世小农女

    痞王逼婚:绝世小农女

    上一世被亲人逼婚而惨死,穿越而来她默默耕耘因刺绣闻名,才子佳人趋之如鹜,却被纨绔官宦子弟、甚至是皇亲国戚死缠不休来逼婚。遇到了中意的痞王,从此他宠她杀人放火,爱她挥刀斩破千百城,护她江山不换,直到生死白头。
  • 御龙法师

    御龙法师

    以我之名,召唤充斥在这天地间的火元素,燃烧吧!奥瑟6岁这年眼睁睁的看着父母被地狱大军杀死,全村仅他一人被布鲁克所救,从此踏上了魔法世界的修炼之路。元素召唤,光暗对峙,宿命前生,一切将围绕着奥瑟的成长展开,揭开千年前一场旷世之战的奥秘,探索前世命运谜团,开展新的精彩人生。撒旦,相比你,我很弱小,连蝼蚁都不如,但是,我,从不畏惧!
  • 极恶嫡妇

    极恶嫡妇

    女法官的穿越人生:听说你的太太是个悍妇?应该算不上吧…她的相公吞吞吐吐的小声说着,眼睛却瞟向不远处的妻子。听说你们家大奶奶是个悍妇?妾室1:是啊,这是一个恶毒的女人,她连婆婆都不放在眼里;妾室2:是啊,绝对的厉害,明明以前我是老大来着…妾室3:从我进了门到现在,看到相公的次数,用手指头都数的过来,你说不是悍妇是什么?!听说你嫡母是个悍妇?悍妇?什什么是悍妇,是说她长得比姨娘美吗?听说你嫂嫂是个悍妇?是啊,没看我现在一心只读圣贤书,门都不敢出…说完,他仰天长叹:那些俗人不懂,其实打是疼,骂是爱,我多想她能多打打我,骂骂我啊!听说你妹妹是个悍妇?侯爷,这绝对是个谣传,我妹妹身为当家主母,谨守妇德,孝顺公婆,温柔娴淑…优点多得数不清。是吗?这样好的女人,本侯爷得去勾搭勾搭。王爷:我以为这一生再也不会爱上别人,孰料,心不由己,我终是爱上了别的女子,与她相处的时光,竟是我这一生都难以忘却的幸福到底谁最腹黑,PK大赛,正式开始!!!!!!!!-------------------------------------------------
  • 全能奇才战神

    全能奇才战神

    一桩神秘的灭村惨案,将整个江湖点燃了,风雨欲来花满楼,有人的地方就有江湖,人在江湖身不由己,魔人与天刀门的命运如何,李浩的一生会在复仇的欲火中度过吗?而他的命运又会是如何?
  • 从此天子不早朝

    从此天子不早朝

    没成亲之前,叶小小是京城闺秀眼中最典型的反面教材,成亲之后,她变成了百姓嘴里贤淑的典范。叶小小:旁人轻我,骗我,谤我,欺我,笑我,妒我,辱我,害我,自当揍她,揍她,狠狠揍她!狼君:用我君临天下,护你天真无瑕,可好?最是无情帝王家,他本无情更无爱,所有的女人都不过是他帝王之路上恣意驱动的棋子,当用则用,不当用则弃,而唯独这只兔子,他拿得起,却再也放不下。————————————————————新书《全能大佬又奶又凶》求收藏求票票求支持~~
  • 佛说蚁喻经

    佛说蚁喻经

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。