登陆注册
2571300000003

第3章 趣味故事(3)

“我永远敬爱你!”原来这封贺信是当年曾奚落过他的波多丽女伯爵久病后伏在病榻上写的。其实,波多丽并没有因格尼亚过去的浪荡生活而歧视他,当他得知格林尼亚已痛改前非、发奋学习时,始终关心他取得的每一个成就。

马克思说:“耻辱就是一种内向的愤怒。如果整个国家真正感到了耻辱,那它就会像一只蜷伏下来的狮子一样,准备向前扑去。”这一至理名言,对个人也是适用的。通过格林尼亚受侮辱后崛起的故事,说明有缺点的人,甚至“二流子”,也是可以通过努力为人类作出贡献的,也是可以得到人民的承认和受到尊敬的。这类例子多如牛毛。西班牙一个名叫桑迪亚哥·拉孟伊卡哈的医学家,小时好逸恶劳不好好学习,沾染不良习气,因偷钱被学校开除,最后与一伙惯盗为伍,浪迹于外,父亲被活活气死。后来他猛然悔悟,发愤读书,高中毕业便名列前茅,入大学后更加努力,25岁时便成为母校的首席医药教授,并因创立神经细胞学说等贡献而荣获1906年诺贝尔生理学和医学奖。这又是一个浪子回头的故事。

对于有缺点、犯错误的青少年,人们应给予更多的爱,像格林尼亚的老师波韦尔和巴比尔那样,这就更有利于他们的转化;而不应对他们采取冷漠甚至歧视挖苦、讽刺打击的态度,否则会使他们心灰意冷,难于改弦易辙,走上光明之路。而有劣迹的青少年本人,则应及时调整自己的心态,坦然面对缺点、改正错误,用自己坚持不懈的努力说明自己确已旧貌换新颜,以取得人们的谅解而便于得到关爱,走向新生;而不应自暴自弃,甚至破罐破摔,在错误的道路上越走越远,最终不但会危害社会,还会毁了自己的一生乃至家庭。

退着走路的科学家

每年12月10日,都有几位诺贝尔奖得主要从瑞典国王手中接过诺贝尔金质奖章、证书和资金,然后按照礼节,倒退着走路回到自己的座位上来。

倒退着走路这一礼节并不只限于瑞典,在德国也是这样。伦琴也遇到过这个问题。

1895年11月8日,伦琴发现了X光,在次年公开后,引起了极大的轰动。几个月中,伦琴收到来自世界各地的讲学邀请。但他要继续研究X光,于是只好婉言谢绝邀请并致歉意,但无法拒绝德皇威廉二世的邀请。1896年1月13日傍晚,他到柏林皇宫去为皇帝及大臣作X光的表演。

除了X光的演示和讲演外,还同皇帝一起进了晚餐,接受了一枚普鲁士二级王冠勋章。离去时退着走路,一直到走出王宫。伦琴退着走路还算顺利,因为他事前知道这个规矩,作了练习。这一练习在1901年获诺贝尔物理学奖时又一次派上了用场。

可是,对其他人来说,就不那么顺利了。

伦琴有两位同胞,一位是大有机化学家威尔斯泰特(1872~1942),另一位是大化工专家哈伯(1868~1934)。前者在20世纪初研究叶绿素a、叶绿素b和黄色素的结构,取得了重大成就——1926年,终于发现叶绿素a、叶绿素b都是镁的化合物。后者则在1909年报道了他用锇催化剂得到的浓度为6%~8%的氨的成果,成为具有实用价值合成氨工艺的转折点。他们作出这些成绩后,也期待着有朝一日皇帝会像邀请伦琴那样,邀请他们。于是他们便经常练习倒退着走路。

不顺利的是威尔斯泰特。他是一位精致瓷器的爱好者、收藏者。两人就在威尔斯泰特放有一些昂贵瓷器的房间里练习倒走。结果,他们的练习以一只昂贵的瓷器被打碎而告终。可是,他们始终没有受到皇帝的邀请。

不过,有趣的是,他们当初的练习最终没有白费。1915年,威尔斯泰特因对植物色素,尤其是叶绿素的化学结构等的研究,荣获诺贝尔化学奖。哈伯也在1918年因对合成氨的贡献获同一奖项。先后获奖那天,他们分别从瑞典国王手中接过奖品,麻利地倒退着走回自己的座位。更为有趣的巧合是:1915年是一战前最后一届、1918年是一战后第一届颁奖,这两届化学奖都分别由德国人独享。

π的命运

稍有数学常识的人都知道,圆周率π是一个无限不循环小数——无理数,也是一个超越数。

在理论上说,可以把它计算到小数点后任意多位,但无法用一个有限数来表示它。

可是,历史上却不止一次发生过这样的事,议会通过法律的形式,把π值规定为一个简单分数、有限位的小数,甚至整数。

第一次发生在19世纪末叶的美国。一位名叫埃德温·古德曼(Edwin JGooldman)的美国医学博士,为了使印第安纳州得到富裕,向该州众议院介绍了“一个新的数学真理”,由于这个发现,这个州将会从王国那里得到好处。于是他为此拟出一个提案。这个提案的第二部分有下列内容:发现第四个重要事实,即直径与圆周之比等于5/4与4之比。由此可以看出,他的“数学真理”是π=4∶(5/4),即π=32。由于该州公共教育局长对这一提案大力支持,所以该州众议院于1897年2月5日一致通过了这个编号为246号的提案。接着,将它递交给参议院的一个委员会。如果最终得到参议院的通过,该议案就将被实施。

似乎是“上帝”不愿“毁灭”人类,每次都在灾难之时派来救星。这次也不例外,上帝派来的救星是普尔都(Purdue)大学的教授瓦尔多(CAWaldo),他在忙别的事情时,偶然听到一些人在议论这件事,他觉得很不对劲,于是决定介入。他在参议院表决前几分钟对此进行干预,致使上述提案被搁置起来。当然,此前一些报纸也对这一荒唐的事进行了冷嘲热讽,这也是这一提案被搁置起来的原因。

对上述事件,另有文献说法不一。例如说,“法律应该承认π=4”——而不是前述32。

还说,古德曼称“顺利解决了过去100多年里最优秀的人才绞尽脑汁也无法解决的问题”,等等。由此可见,这一奇趣事件已引起许多媒体关注,以致在多次传递时发生了的失真。

上述荒唐事还不止一件,有文献说,一个国家的议会企图以法律的形式将π值定为3。

阿基米德的墓碑

许多名人在辞别人世后,后人为了表彰或纪念他们,或者遵照这些名人的遗愿,常为他们立下墓碑,碑上刻有铭文,有的还有图形、公式等。

古希腊阿基米德被称为“数学之神”。他在《论球和圆柱》一书中公布了他的一个有趣的发现:一个内切于圆柱的球的体积和表面积,都分别是这个圆柱的2/3。他对这个发现极为欣赏,以至于希望在他死后的墓碑上刻下这个图形。

约公元前265年,罗马人征服了意大利半岛,旋即向地中海其他地区扩张。战争的结果是,公元前146年伽太基帝国灭亡。

在第二次布匿战争中,罗马人于公元前215年进攻阿基米德所在的叙拉古城。阿基米德以其天才的智慧和叙拉古人一起顽强地抵抗了三年,强大的罗马军团付出了惨重的代价。最后因为叛徒的出卖和弹尽粮绝而兵败城陷。这时,阿基米德正在思考一个数学问题,他是那样全神贯注,以致没有察觉敌人已来到面前。一个士兵举起了屠刀……一代伟人就这样惨死在暴徒之手。他临终前还在愤怒地吼道:“不要弄坏我的图形!”时间是公元前212年。

阿基米德死后,罗马将领马塞拉斯(约元前268~前208)得知了这一消息,他对这个难以制服的对手表示了钦佩和尊敬。不但把杀害阿基米德的那个士兵作为杀人犯来处决了,而且为阿基米德举行了隆重的葬礼,并在墓碑上刻下阿基米德要求的那个图形,还刻有铭文“再生乃故我”。

真有这个事吗?真有这样的墓碑吗?当时没有人见过,许多人认为这仅仅是一个传说。

光阴似箭,岁月如流。100多年过去。罗马政治家、雄辩家、哲学家西塞罗(公元前106~前43)在公元前75年任西西里总督。他还曾作为罗马帝国的财税官去叙拉古收过税,由于他仰慕阿氏,便在此时专门去寻找阿氏的墓地。他找了很久,终于在荆棘丛生的杂草中找到了那块墓碑,见到了那个图形。于是他把荒芜的墓地修葺一新。传说被证实。

但是,年深日久,墓地随岁月的流逝和战争的硝烟再次被废弃。随着城市的发展,这个著名的古迹似乎永远消失了。这是一个巨大的遗憾!

然而,奇迹出现了。在1965年,当叙拉古一家新建的饭店挖掘地基时,铲土机碰到了一块墓碑。人们惊奇地发现,上面刻着一个球内切于圆柱的图形。这不是阿基米德的墓碑吗?人们欣喜若狂。这真是“众里寻她千百度,那人却在灯火阑珊处”。

叙拉古人终于为他们这位空前绝后的伟人重建了茔墓:坟前立着那著名的石碑,碑上依然是那个阿基米德引为得意的图形和铭文。

理发师引出的“危机”

理发师怎么会引出“危机”?GEB是什么?两者之间又怎么会有关系呢?

相传在很早以前的一个村庄里,只有一个理发师,他规定只替而且一定替不给自己理发的人理发。这就引出一个问题:他该不该给自己理发?或者问:他的头发应由谁理?

要是他给自己理发,那么他就违反了自己的规定,因为按规定,他不应该为自己理发;要是他不给自己理发,他也违反了自己的规定,因为按规定,他一定得给自己不理发的人理发,所以他也得给自己理发。理发师犯难了:他不论怎么做都“自己打自己的耳光”。

在逻辑学中,如果承认某一命题是真的,但它又是假的;如果承认它是假的,但它又是真的。这样的命题叫“悖论”或“佯谬”。上面这个故事被称为“理发师悖论”。

1901年6月,英国数学家、哲学家罗素(1872~1970)发现了后人以他的名字命名的“罗素悖论”,这是集合论中的一个悖论,所以又叫“集合悖论”。它的基本内容是:如果把所有集合分为甲、乙两类,甲类可以把自身作为自己的元素,乙类不可以把自身作为自己的元素;那么,所有的乙类集合的集合是甲类还是乙类呢?如果说所有的乙类集合的集合属于甲类,由于甲类可以把自身作为自己的元素,那么乙类集合的集合应属于乙类。如果说所有的乙类集合的集合属于乙类,那么它显然可以纳入所有的乙类集合的集合之中,这样它又符合甲类要求而属于甲类了。由此看来,所有的乙类集合的集合既是甲类又非甲类,既是乙类又非乙类,于是造成了不可克服的逻辑矛盾。1918年,罗素把这个较为高深的集合论中的悖论通俗地解释为前述“理发师悖论”,所以许多文献把这两个悖论相提并论,其本质都是,使逻辑陷入一种无法摆脱的“怪圈”。

那么,“理发师悖论”又怎么会引发危机呢?它的确引出了“危机”——“第三次数学危机”。集合论中存在着不可克服的逻辑矛盾,从根本上危及整个数学体系的确定性和严格性,这怎么不是“危机”呢?

不过,这里有一个很重要的历史背景,就是,为什么这次危机不早不晚,正好在20世纪初即“罗素悖论”提出时就到来了呢?

它似乎是可以早些到来的,因为历史上的数学悖论早已发现且不计其数。例如,古希腊时代欧布利德或古罗马哲学家、政治家西塞罗(公元前106~前43)的“谷堆悖论”,德国哲学家黑格尔的“秃头悖论”,意大利伽利略的“自然数等于完全平方数悖论”,德国数学家施瓦兹(1843~1921)在1880年提出的“施瓦兹悖论”。这些悖论没有能引起“危机”的原因在于,数学家们对自己不够自信,因为类似“悖论”这类问题,在数学中比比皆是,不值得一提。没有引起“危机”的第二个原因在于,其中有的悖论已被“克服”,既已克服,便不存在“危机”。例如古希腊数学家芝诺(约公元前496~前429)提出的四个悖论——其一是众所周知的古希腊神话中善跑的英雄阿基里斯永远追不上乌龟的悖论,在19世纪已经得到解决;有的则未能引起足够的注意。因此在20世纪之前,这一“危机”没有到来。

1874年,德国康托在《克列尔杂志》上发表了《论所有实代数数集合的一个性质》的论文,它标志着集合论的诞生。集合论的创立,颠倒了许多前人的想法,与传统数学观念相冲突,因此一开始就遭到反对者的指责。但在1897年第一次国际数学家大会在瑞士苏黎世召开时,德国数学家赫尔维茨(1859~1919)和法国数学家阿达马(1865~1963)就充分肯定了康托的理论在分析学中的重要地位,最终导致集合论被公认。此外,“皮亚诺算术公理系统”的出现,自然数理论被归结为一组不加定义的概念和几条有关的公理,算术理论公理化了。这样,数学的基础就放在集合论之上了。

这样,在19世纪后半叶,数学家们开始陶醉了:数学基础已牢固无比,数学的严密性已达到。不过,几乎同时,一些事也使数学家们不那么“陶醉”:1897年,意大利数学家布拉利·福蒂(1861~1931)提出了以他名字命名的悖论;1899年,康托也提出“最大基数悖论”和“最大序数悖论”。这些集合论中的悖论也没有得到解决,一些人心中也产生了困惑。

然而,这些并没能阻止人们的自信。1900年在巴黎召开的第二次国际数学家大会上,法国著名数学家、物理学家庞加莱(1854~1912)就宣称:“现在,我们能说(数学)完全的严格性已经到来了。”接着便是前述“罗素悖论”和“第三次数学危机”的出现。

由此可见,“第三次数学危机”是在人们误以为数学基础已经牢固,因而盲目乐观,但接着就遇到无法克服的“悖论”时思想准备不足而必然产生的。

不过,“第三次数学危机”的出现虽然使西方数学界、哲学界、逻辑界产生震惊,但并未使他们方寸大乱。因为人们已经有前两次“危机”的历史“经验”。于是他们为消除这一危机进行了至今仍在继续的努力。但在20世纪前30年是他们投入最多、辩论最激烈的时期,因而许多重大成果相继产生。其中成果之一便是三大数学流派——逻辑主义、直觉主义、形式主义的诞生。

1931年,奥地利数学家哥德尔(1906~1972)发表了《论“数学原理”和有关体系的形式不可判定命题》的论文,给出了两个“不完备定理”,这是“数学和逻辑基础方面伟大的划时代的贡献”。哥德尔第一定理推翻了数学的所有领域能被完全公理化这一强烈的信念;而第二定理则摧毁了沿着希尔伯特等人设想过的路线证明数学内部相容性的全部希望。从此,前述三大数学流派为克服“危机”、寻找可靠数学基础的努力全部化为泡影!于是,数学家们再次陷入困惑,人们在困惑中沿着不完备定理这一指路明灯进入新一轮的思考和探索。

不完备定理表明,任何所谓严密形式体系都不是天衣无缝的,没有哪个重要的部门能保证自己没有内在矛盾,人的智慧源泉不能被完全公理化;新的证明原则等待我们去发现或发明,某些被认可的数学哲学应重新评价,其中有的会被更新或废弃。这种认识论上的飞跃为我们开拓了广阔的视野。

同类推荐
  • 优秀小学生应该诵读的好句好段

    优秀小学生应该诵读的好句好段

    随着科学技术的迅猛发展,知识经济和信息时代的加速到来,以及国际竞争的日趋激烈,立足现实、面向世界、面向未来,加快人才培养的步伐,全面推进素质教育,就成了一件十分重要、十分紧迫的事情。一代伟人邓小平说:“教育要从娃娃抓起。”的确如此!素质教育必须从小抓起。小学生正处在长身体、长知识、长见闻的年龄,对这个世界充满了好奇,有很强的求知欲,也有很强的可塑性,必须抓住这个阶段对他们着力进行培养,为他们的全面发展和终生发展打下坚实的基础,为他们将来在激烈的市场竞争和人才竞争中立于不败之地打下坚实的基础。
  • 奇风异俗(走进科学)

    奇风异俗(走进科学)

    本套书全面而系统地介绍了当今世界各种各样的难解之谜和科学技术,集知识性、趣味性、新奇性、疑问性与科普性于一体,深入浅出,生动可读,通俗易懂,目的是使广大读者在兴味盎然地领略世界难解之谜和科学技术的同时,能够加深思考,启迪智慧,开阔视野,增加知识,能够正确了解和认识这个世界,激发求知的欲望和探索的精神,激起热爱科学和追求科学的热情,不断掌握开启人类世界的金钥匙,不断推动人类社会向前发展,使我们真正成为人类社会的主人。
  • 大象巴巴全集

    大象巴巴全集

    世界上最早的绘本寓言故事的重新演绎,让经典再现经典。布吕诺夫编 著的《大象巴巴全集》完整收录了“巴巴之父”让·德·布吕诺夫原创的六 个经典故事:“巴巴的故事”、“巴巴的旅行”、“国王巴巴”、“巴巴和 猴子泽菲尔”、“巴巴和他的孩子们”以及“巴巴和圣诞老人”。小象巴巴 ,妻子西莱斯特,三个孩子弗洛拉、波姆和亚历山大,以及朋友亚瑟和小猴 子泽菲尔……它们以及它们的故事已经成为全世界孩子的最爱,伴随着他们 进入甜美的梦乡。阅读《大象巴巴全集》,你会有置身动漫之中的感觉—— 童话中有图画,图画中有童话,恰如观赏鲜活、生动的动画片,领略大象巴 巴生活世界的神奇与美妙。
  • 智商潜能激发(婴幼儿3-4岁)

    智商潜能激发(婴幼儿3-4岁)

    本书介绍了开启3-4岁幼儿智商和潜能开发的方法,包括:让孩子拥有演说家的口才、让孩子拥有科学家的逻辑、让孩子拥有艺术家的气质、让孩子拥有交际家的手腕、让孩子拥有道德家的品性、做好孩子的营养师、让孩子在游戏和玩具中激发智慧。
  • 让孩子受益一生的经典童话

    让孩子受益一生的经典童话

    爱听故事是每个孩子的天性,阅读已经被认定为人一生最重要的素养。阅读素养高的人,不仅求职的能力、转换行业的能力强,而且从心理学角度讲,也更容易拥有快乐、充实的人生。本书选取了中外经典童话,这些童话仿佛一滴滴甘露,滋润着孩子稚嫩的心灵;又好似一位循循善诱的智者,引导孩子变得聪明好学,让孩子更加求知若渴。相信有了这本书,孩子们的生活会变得更加丰富多彩。
热门推荐
  • 宫心计:倾世红颜

    宫心计:倾世红颜

    刚接受了穿越的事实,又被选入皇宫。一起进宫的竟然还有自己的死对头夏莹曼!她仗着自已是夏皇后的表妹,张扬跋扈,屡次陷害自已。林若雪本想低调做人,和好友出逃皇宫,却被抓了回去。夏家姐妹变本加厉,把她往死路上逼。人若犯我我必犯人!步步为营,慢慢得到皇上的信赖,收拾了夏家两姐妹。皇后却把自己和冥凰的种种公之于众。为了保住爱人,林若雪只好忍痛:“冥凰,对不起,我爱的是皇上。”爱人的误解,皇帝的怀疑,林若雪该何去何从。【情节虚构,请勿模仿】
  • The Virgin of the Sun

    The Virgin of the Sun

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 末世符修

    末世符修

    一场意外,这个世界的灵气得到了前所未有的提升,重现洪荒时代没有丧尸的末世!这是一个百族争鸣的时代,这种修炼者层出不穷,武者、道士、修真者、魔法师、战士、术士等等。一缕残魂,跨越重重时空而来。得到了残魂的毛方,从此展开了自己道。
  • 北东园笔录

    北东园笔录

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • Black Heart and White Heart

    Black Heart and White Heart

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 南京大屠杀全纪实

    南京大屠杀全纪实

    以中国人的视角完整反映南京大屠杀始末。1937年12月13日,日本侵略者攻破南京,制造了惨绝人寰的大屠杀。进城的日军,以其占领者的优越感,在随后的几个星期里,残暴地屠杀了已经放下武器的中国守城官兵和普通市民达30余万人,在中国人心头和中华民族史上留下了一段永远难以愈合的伤痛……作者饱蘸国人的血泪,文笔大气磅礴,以详尽的事实和一手资料以及诸多不为人知的历史真相震撼着读者,以犀利的拷问促使今天的读者深刻反思南京大屠杀的历史,深入思考其历史教训现实意义。
  • 病逸漫记

    病逸漫记

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 医色倾国:爆宠摄政王妃

    医色倾国:爆宠摄政王妃

    重生到一个废柴嫡女的身上,天机处绝色女特工表示不服!凭什么人善就该被人欺,人傻就该被抛弃?妹妹抢她未婚夫要上天,那就送你俩一起上天!家门脑残黑白不分,那就让你们亮瞎狗眼!太后欺负?她反霸后宫!太子虐她?她休夫改嫁!但奈何她一世英名……却刚脱虎口又入狼怀!他是人人畏惧的摄政王爷,杀伐决断,血腥残暴,也是将她吃得骨头都不剩的新婚夫君。“人人都怕本王,可本王却对你情有独钟,你感不感动?”看着男人一边侧身解衣,一边将锋利的剑刃架在自己的脖子上,欧阳静吞了吞口水:“不敢动!不敢动!”--情节虚构,请勿模仿
  • 生死扣

    生死扣

    扣子比常小娥大一岁。小时候,他们经常在一起玩过家家。扣子扮新郎官,常小娥扮新娘子。扣子从家里偷来一块红头巾,戴到常小娥头上,煞有介事地牵着她的手,一边走,一边小声提醒常小娥,你哭呀,为么子不哭了?在扣子记忆中,村里的大姑娘出嫁时没有一个不哭的。可常小娥不仅不哭,还吃吃地笑个不停。跟在后头的小伙伴们一遍一遍地唱:小娥小娥你不哭,转过弯来就是你的屋,小娥小娥你不笑,转过弯来就是你的灶。常小娥笑得更厉害了。扣子没办法,心想,常小娥真是傻乎乎的,长大了我决不找她做媳妇。扣子这样想,不过是一时赌气。
  • 凤凰谋

    凤凰谋

    爹不亲主母不爱的名门庶