登陆注册
2163000000008

第8章 模块一车身钣金基础(8)

圆柱面可看成内切正棱柱的底面边数无限增多而形成。圆柱面上各素线互相平行,因此,圆柱面展开也可用平行线法,并按直棱柱面展开方法作图。直圆柱的展开图为一矩形,底边的长度等于圆柱管的圆周长nD,高为圆柱管的高度。

(5)用平行线法作已知主、俯视图斜口直圆柱的展开图

(1)分析:

斜口直圆柱管是直圆柱管被正垂面斜截而形成的。截平面与圆柱面的截交线为椭圆线,圆柱面上素线长短不一,由于圆柱轴线垂直H面,各素线的正面投影为实长。画展开图时,底圆展成直线,过直线上各等分点作垂线(素线),并截取素线上相应长度得其端点,并连成光滑曲线。

(2)作图

a.把俯视图圆周等分为12等分(等分越多越准确),过各等点找出主视图上相应素线lV、2V……b.将圆周展成直线,截取相应12等分弧长,近似作图以弦长代替弧长in=i2、nm=23……得等分点I、n、m、过各点作垂线,并在垂线上截取相应素线等长的线段ia=Va\B=2’b’……(或过主视图上点—犫z……引水平线与相应素线相交),得各素线端点A犅……c.过各素线的端点A、B、C……顺序连成光滑曲线,即得所求,如图3—25(c)所示。应当指出用弦长代替弧长作出的展开图,其底边长度缩小,产生一定误差,是一种近似作图。由于钣金制件有的要求不很准确,用这种方法可达到要求,作图简便,所以较为常用。有时为了把误差控制在一定范围内,要提高制件精确度,可增加圆周等分数,缩小素线之间的误差。若还需更为准确作图,应先计算出圆周长犇的尺寸作直线,再进行等分,这样作出展开图较为准确。

(6)用平行线法作已知两端斜口直圆柱的主、俯视图的展开图

(1)分析:

如图3—26所示,从图中可知两端斜口圆柱的轴线是正平线,圆柱面素线正面投影为实长,但它们均不与端面(底面)垂直。

(2)作图:

a.在主视图的对称位置作N—N线(正垂面N的积聚投影)垂直轴线,并用换面法求得截面圆的实形,在该圆周上等分(2等分)得点1、b.过等分点作斜圆面素线11’、22’……得素线端点犪、c.将正截面圆周展成直线(即N—N延长线),用12(代替12弧)在该直线截出点I、n……d.过各点I、H、m……作NN线的垂线,由主视图的两端斜口素线端点平行线,分别与相应垂线的交点……e.把点犃犅……及点犃1犅1……顺序连成曲线,即得所求。

七、放射线展开法

若钣金制件的侧面是由棱锥面或圆锥面所围成时,则这种结构的表面也属于可展表面。由于棱锥面和圆锥面上的棱线和素线相交于锥顶,若沿制件表面的棱线或素线剪开,然后把各棱线或各素线绕着锥顶摊平在一个平面上,则所得表面展开的各棱线或各素线依然汇交于一点,作出的展开图上各棱线或各素线也汇交于一点。这种利用棱线或素线汇交于一点的作图方法,称为放射线法。

1.放射线展开法原理

放射线展开法的原理是:可以把锥体表面上任意相邻的两条素线(或棱线)及其所夹的底边线,看成是一个近似的平面三角形。当各小三角形的底边也足够短的时候,则小三角形面积的和就等于原来形体的表面积。若把所有的小三角形一次铺开成一平面,原来的形体表面也就被展开了。作展开图的关键是确定这些素线(或棱线)的长度和相邻素线(或棱线)间的夹角,或者利用两条素线(或棱线)所夹的底边线实长来确定,通过三角形底边线两点间距离间接达到确定其夹角的目的。

2.放射线展开法的应用

(1)用放射线展开法作已知主、俯视图棱锥管的展开图

(1)分析:

从图中可知正四棱锥的侧面是由四个全等的等腰三角形所围成,左右侧面是正垂面,前、后侧面为侧垂面,在主、俯视图找不到实形。画展开图依次作出四个等腰三角形的实形。底面正四边形边是水平线,水平投影为实长;四个侧棱相等并汇交于一点S,是一般位置线。主、俯视图找不到实长,因此,求作其展开图,关键求得棱线的实长。

(2)作图

a.用旋转法或直角三角形法求棱线的实长。用SC旋转得SQCi投影或SC为底边作直角三角形得SGCG,SGCG=棱线实长。

b.以S为圆心,棱线长SQCi=SQCQ为半径画圆弧,并以底边的实长在圆弧上截取点。

c.把各点B、C……顺序连线,并分别与S点连线,得四个全等的等腰三角形,为正四棱锥管展开图。

(1)分析:

斜口直四棱锥管可看成直四棱锥被正垂面截切而成,其侧面是由两个等腰梯形和两个梯形所围成,画展开图即依次画出这四个梯形的实形。

(2)作图:

a.按图3—27方法作完整四棱锥展开图(底面对应边相等)。

b.在主视图上定出斜口面与棱线相交点/(/)、/(//),引水平线与斜线SC:i或S0C0相交,得四个梯形面上棱线的实长(C0巧、C0……)。

(3)用放射线展开法作已知主、俯视图斜漏斗的展开图

(1)分析:

如图3—29(a)、(b)所示,斜漏斗是平口斜四棱锥。从图中看出左右侧面是两个等腰梯形,前后侧面是两个前后对称相等梯形。作展开图应依次作出这四个面的实形:即先作斜四棱锥展开图,然后,再截取各棱线的有效长度,即可作出其展开图。

(2)作图:

a.延长主、俯视图轮廓线,得斜四棱锥顶点S的投影Z、s。

b.底面四边的水平投影d为实长。由于对称关系,只需用旋转法求作棱线SA、SB的实长即可;若取In为接缝线(剪开hdOO为实长。

c.以S为顶点,分别用已知长依次作出ASIA、ASAB……d.求作棱线有效长度。

e.在SI上截取接缝线I在棱线SA上截取AD=ai木;在棱线SB上截取BC=bic’......

c.将所得各点n犇,c、m顺序连线,即得漏斗前半部展开图。后半部展开图形状与其相同。

(4)用放射线展开法作圆锥管的展开图

(1)分析:

圆锥素线汇交于锥顶,其锥面的展开图为扇形。扇形半径等于圆锥母线的长度兄扇形的圆弧长等于圆锥底圆的周长niW为底圆直径),扇形的角度a=180°i/i—。

圆锥面也可看成正棱锥面底面的边数无限增多而形成的。圆锥面的展开变成棱锥面的展开,即可用放射法作图。用这种方法作图虽有一定误差,但钣金制件在误差允许范围内可通过增加圆周等分数来解决。

(2)作图:

a.把俯视图的圆周分为十二等分,通过等分点在主视图上作出对应素线。

b.以顶点/为圆心,用圆锥(素线)为半径画圆弧,自点0开始用圆周弦长代替弧长,在圆弧上截取oi=oi,In=12……得点I、n……分别与/相连,得到圆锥面近似展开图(图中只标出一半)。

(5)用放射线展开法作已知主、俯视图斜口圆锥管的展开图(1)分析:

从图3—31中已知斜口圆锥管是圆锥被正垂面斜截去顶部而形成的。斜口形状为椭圆,正面投影积聚为一斜线。它的展开按完整圆锥展开成扇形后,再用有效素线实长在对应素线上截取各点,并连成光滑曲线,即得所求。

(2)作图:

a.按图3—31(c)所示方法画出完整圆锥面的展开图。

b.在俯视图的圆周上等分八等分点1、在主视图画出八条对应素线,得素线与斜口交点犪、用旋转法(过这些点引水平线与圆锥面最左素线/1,的交点)求出这些点在素线各自实际位置,即把同一条素线分为上、下两段实长。

a.以S为圆心,……为半径画弧,在展开图上与各自素线交点A、B……d.把点A、B、C……各点连成光滑曲线,即得斜口圆锥管展开图。

(6)用放射线展开法作上平口、下曲口圆锥管的展开图(图1—32)从主、俯视图可知,上平口与圆锥轴线垂直,在上平口以上部分为正圆锥面,平口的水平投影为实形(圆);下曲口为曲面,水平投影为曲线。作其展开图可分两步:

第一步,按方法,把上平口以上当成完整圆锥面展开成扇形。

第二步,把展开图上各素线延长,同时用旋转法在主视图上求得实体部分各素线有效实长后,在展开图上截取相应长度,得点A、B……并连成光滑曲线,即得所求。

(7)用放射线展开法作斜椭圆锥的展开图

(1)分析:

斜椭圆锥的正截面是椭圆,作其展开图时,可按图3—29所示斜棱锥来展开,由于斜椭圆锥面上的素线不等,应分别求出它们的实长。

(2)作图:

a.将俯视图上圆周分为12等分,并画出各素线的两面投影(图中前、后对称,只画前半部的投影)。

b.用旋转法求出各素线的实长/li,、/2i、/3i......

c.用素线以及底圆等分点之间的弦长作第一个ASOI,用同法依次作出其他的11个三角形。

d.把三角形底边各顶点顺序连成光滑曲线,得斜椭圆锥表面展开图。

(8)用放射线展开法作平口斜椭圆锥管展开图:

平口斜椭圆锥管可看成斜椭圆锥截切去锥顶部分而成,应先按图3—34所示方法求作完整斜椭圆锥表面展开图。用旋转法求得平口斜椭圆锥管各素线的有效长度,即以/为圆心,分别把所截部分的素线实长转到展开图上对应素线上,得各点并顺序连成光滑曲线,得所求。

3.放射线展开法小结放射线展开法是很重要的一种展开方法。它运用于所有锥体及锥截管件或构件的侧面展开,尽管锥体表面各种各样,但展开方法却大同小异,作法可归纳如下:

(1)在二视图中(或只在某一视图中)通过延长投影边等手段完成整个锥体的放样图。

(2)通过等分断面周长(或任意分割断面全长)的方法,作出各分点所对应的断面素线(包括棱锥侧棱以及侧面上过锥顶点的直线),将锥面分割成若干小三角形。

(3)应用求实长的方法(常用旋转法、直角三角形法),把所有不反映实长的素线,与作展开图有关的直线的实长一一不漏地求出来。

(4)以实长为准,利用交轨法(正锥体可用扇形法)作出整个锥体侧面的展开图,同时作出全部放射线。

(5)在整个锥体侧面展开图的基础上,以放射线为骨架,以有关实长为准,再画出锥体截切部分所在曲线的展开曲线,完成全部展开图。

八、三角形展开法

对于可展曲面来说,因为整个曲面是可展的,因此每一部分也一定是可展的。有些钣金件的表面是由平面、柱面和锥面的全体或部分曲面等组合而成的任意形状表面,全部是由各种可展表面的部分表面组合而成,因而也一定是可展的。

在钣金制件上有的表面(平面或曲面)不宜或不可能用平行线或放射线法直接求作展开图时,常把这种表面划分成若干三角形平面或三角形曲面,然后求得三角形各边的实长,再由已求三角形边长依次拼画出各个三角形,就能作出制件的表面展开图。这种应用三角形作图原理求作展开图方法,称为三角形法或三角线法。

1.三角形法展开原理

若形体的表面是由若干平面与曲面、曲面与曲面、平面与平面构成,那么就可以把表面划分成若干小三角形,然后把这些小三角形按原来的相互位置和顺序不遗漏地铺平开来,则形体表面就被展开了。

三角形法虽然能用于任何形体,但由于这种办法比较繁琐,所以只有在必要时(三角形法比用平行线法或放射线法简单时)才采用它。如当形体表面无平行的素线或棱线,不适用平行线展开法,又无集中所有素线或棱线的顶点,不适于用放射线法展开时,才采用三角形法作展开图。

2.三角形展开法的应用

(1)用三角形展开法作上、下方口错位漏斗的展开图

从图3—35中可知上、下口均为正方形,但位置偏错45°,整个侧面由两对四个等腰三角形所围成。其上、下口是水平面,水平投影的正方形为实形,各边a、b为实长,八条侧棱相等,是一般位置直线。若以In为接缝边,则展开图应有九个三角形(首尾为直角三角形)。由于对称形,所以只需求作其中三个三角形的实形即可。接缝线In为正平线,正面投影1’2’为实长,等腰三角形的腰长犿用旋转法求得。

作图步骤:

(1)用旋转法求作三角形中一条腰长的实长,如以C为圆心,过点d画圆弧求得CQ1,C&1为腰长犿的实长。

(2)分别用a、b、m、为边长,依次作出各个相邻三角形,即得其展开图。

由于梯形高和底边垂直,所以IH垂直犪/2,根据直角三角形已知两个直角边长(即a/2和便可作出的原理,斜边犿为等腰梯形两腰的实长,所以不需用旋转法求腰长的实长。

用三角形展开法作汽车引擎盖的展开图汽车引擎盖是一块左右对称、上下两端形状不同的曲面,如图3—36所示,这样的曲面只能用三角形法展开。把曲面分成若干个小三角形,求出各小三角形的实长,就能作出展开图。

作图步骤:

(1)将主视图中大端的曲线分成若干段,各份可以相等也可以不等,为了作图的方便一般作等分,由于曲面左右对称,所以只要画一半即可。

(2)把小端的半圆曲线也分成相应的份数。得1’、2’、3’…、7’各点。把各对应点连成直线,再对角相连,即得到许多小三角形。

(3)按投影关系在俯视图中作出各连线的投影,这样把曲面分成许多小三角形,根据主、俯两投影直角三角形法求出各线的实长。

(4)以7—7线作为基准线(图形左右对称),向两边用实长线作出各三角形的实形得展开图。

3.三角形展开法小结

三角形展开法又叫回归线展开法,因为它略去了形体原来相邻素线间的平行、相交、异面关系,而用新的三角线来代替,因此对曲面来说是一种近似的展开法,这种方法不仅可用来展开可展曲面,还可以作不可展曲面的近似展开图。三角形展开构件表面的3个步骤为:

(1)在放样图中将形体表面正确分割成若干小三角形。

(2)求所有小三角形各边的实长。

(3)以放样图中各小三角形的相邻位置为依据,用已知的或求出的实长为半径,通过交轨法,依次展开所有小三角形,最后将所得的交点视构件具体情况用曲线或用折线连接起来,由此得到所需构件的展开图。

九、三种展开方法展开各种可展表面的比较平行线展开法、放射线展开法和三角形展开法是制作钣金件的展开图的基本展开方法,当拿到一个钣金件的视图时,首先应正确地对构件进行形体分析,对构件表面的棱线或可利用素线进行分析,抓住构件表面的主要特点,在上述三种方法中选取可行和最简便的一种。

这就必须懂得三种展开方法的关系及其应用范围。

1.三种展开方法之间的关系

从展开实例中可以看出,三角线展开法能展开一切可展形体的表面,平行线展开法仅限于展开素线相互平行的形体表面,放射线展开法则只适于展开素线交汇于一点的形体表面。这说明了平行线展开法和放射线展开法只是三角形展开法的两种特殊情况。

2.三种展开方法的适用范围当构件表面由相互平行的素线和棱线所组成,而且这些素线和棱线均平行于某一投影面,在该投影中反映实长时,比较适合用平行线展开法。

当构件表面的素线和棱线或其延长线能够交于一点,即构件表面为锥体时,适合用放射线展开法。

同类推荐
  • 教你学击剑(学生室内外运动学习手册)

    教你学击剑(学生室内外运动学习手册)

    体育运动是以身体练习为基本手段,以增强人的体质,促进人的全面发展,丰富社会文化生活和促进精神文明为目的一种有意识、有组织的社会活动。室内外体育运动内容丰富,种类繁多,主要项目有田径、球类、游泳、武术、登山、滑冰、举重、摔跤、自行车、摩托车等数十个类别。
  • 二十世纪英美短篇小说选读

    二十世纪英美短篇小说选读

    沈炎选编的《二十世纪英美短篇小说选读》以( 短篇)小说基本要素,如描述(deion),叙述 (narration),情节(plot),人物与人物塑造 (character&characterization),背景(setting) ,叙事角度(point of view),主题(theme),和象 (symbolism)等为轴线,选取经典英美短篇小说介绍小说阅读技巧,以提高学生文学阅读和欣赏的能力。本教材由两部分组成:①理论讲解;②23篇短篇小说。本教材为全英语教材。
  • 茶花女(语文新课标课外读物)

    茶花女(语文新课标课外读物)

    现代中、小学生不能只局限于校园和课本,应该广开视野,广长见识,广泛了解博大的世界和社会,不断增加丰富的现代社会知识和世界信息,才有所精神准备,才能迅速地长大,将来才能够自由地翱翔于世界蓝天。否则,我们将永远是妈妈怀抱中的乖宝宝,将永远是温室里面的豆芽菜,那么,我们将怎样走向社会、走向世界呢?
  • 教学名家谈成长

    教学名家谈成长

    教学名家之所以成功,关键因素不在于工作条件的优劣,不在于环境质量的好坏,也不于其教学经验的多少,工作资历的长短,做事能力的大小,而在于智慧的追求、修炼、丰富与成熟。拥有了思想智慧、人生智慧、教学智慧,教师就可以神清气爽、底蕴深厚地与学生一道,共同走向自我求知、自我激励、自我发展的康庄大道。
  • 唐·吉诃德(语文新课标课外必读第九辑)

    唐·吉诃德(语文新课标课外必读第九辑)

    国家教育部颁布了最新《语文课程标准》,统称新课标,对中、小学语文教学指定了阅读书目,对阅读的数量、内容、质量以及速度都提出了明确的要求,这对于提高学生的阅读能力,培养语文素养,陶冶情操,促进学生终身学习和终身可持续发展,对于提高广大人民的文学素养具有极大的意义。
热门推荐
  • 总裁爹地之萌宝归来

    总裁爹地之萌宝归来

    梁洛云被自己的父亲下药,稀里糊涂上了总裁大人费向天的床,被吃干抹净不说,随后还得知此父非亲生,生父死因蹊跷,正在遭全力追捕,哎,要不要这么悲催,前有狼后有虎,三十六计走为上,五年后携萌宝归来。“女人,你居然说不认识我?你给我装失忆是吧?”“女人,借我的东西什么时候还呀”“哎,我说,费大总裁,你还要不要脸了,我只是借了一棵种子而己,有你这么讨要的吗?”“哼,我的种子有这么好借的吗?当初可是你求着让我救你的”之后,梁洛云终于知道,他费大总裁的种子真的不好借呀,这不,帐没算清,把自己也给搭进去了。亲们,这本书含盖了甜宠,萌宝,还有悬疑,大家可要认真看噢,么么哒
  • 佛说大威灯光仙人问疑经

    佛说大威灯光仙人问疑经

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 国学常识全知道

    国学常识全知道

    《国学常识全知道》是一部快速了解中国古代文化的百科全书,涵盖了国家政治、思想学术、宗教信仰、天文历法、神秘文化、兵制礼制、国学掌故、国学典籍、文学史学、文化艺术、民俗节日、百工名物等各个方面的内容,为读者轻松掌握国学知识提供了一条捷径。书中既有分门别类的严谨解释,又有引人入胜的传略和逸事,可帮助你登堂入室,领略国学的无穷魅力。
  • 点绛唇之神之嫡女

    点绛唇之神之嫡女

    别人穿越不是带着强大技能,就是拿着金手指,怎么到了自己这儿就只有一朵花了?不尽心尽力辅佐主人也就罢了,你就安安静静地当一朵花多好啊,干嘛老去招惹那些大boss,你是觉得你家主人肉盾耐收拾吗?招黑体质退散,赶快恢复你百科全书的职业道德,不然这个月的牛肉干全部没收......且看一人一花玩转异世界,为寻找救世主跑遍水陆空三个大陆,结果救世主竟然......
  • 寒温篇

    寒温篇

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 马熊

    马熊

    就跟鬼上了身似的,他提起磨得尖细的伞骨就去了延春诊所。门口的大音箱放着《喜刷刷》,震得人心慌。院子里围着一群人在打牌。看见王连林进来,李安德喊:“苏水生,你爷爷来了,快喊爷爷。”只见一个十来岁的男孩从人堆里站起来,怯怯地,冲王连林叫了声爷爷。小男孩活脱脱是王勇的翻版。王连林慌忙掏口袋,尖利的伞骨也掉到了地下。他掏出两百块钱塞给小王勇,嘴里却说不出话来。低头去捡伞骨时,却碰到了小男孩的手。小男孩的手细嫩,暖和,烫得他半天没回过神。周围的人和他说什么,他都没听清。也顾不上拿伞骨了,只是抓着小男孩,半天,终于挤出几声好好好。
  • 你是人间四月天:林徽因诗文选

    你是人间四月天:林徽因诗文选

    本书记录了民国一代才女内心隐秘和复杂的情感心路历程。诗歌婉转、轻柔,散文平和中带着大气,是民国灿烂文学史中一道别有韵味的诗歌散文选集。
  • 醉狂

    醉狂

    音开新文了亲们,记得看哦,喜欢的就收啦,支持一下某音!!《得意风流》女主依然强大。她豪迈自负,英雄少年,白衣漠然,奔驰在云天大陆上。长戟所指,尽血染看戎马百战,苍生叹马踏关中,烽烟燃三尺青锋,无声断倾家国,角声寒风起云涌,尘烟散轩辕寻梦二十一世纪的一个修真者,一次历险当中死于巫魔之手而魂穿。一朝穿越,一缕幽魂依附在战场上的一具死尸上。再次睁眼,一切都变了……继承着那人的记忆,与那人的恨,这才知道他居然是“她”而且还是当前四大强国轩辕皇朝唯一的一位王爷。处处杀机,自己的国家容不下他,敌国恨他,二十万大军要靠他来养活。偶遇杀手更是家常便饭。终有一日她烦,她恼了……如果非要得这天下才可以安静,那她便得这天下又如何。马蹄踏碎清秋夜,剑映萧索冷孤光。战火烧尽白骨乱,兵临城下傲沧桑。可是却又为何在那大殿之上,弃下皇位转身离去……叹红尘风雨路三千曲未终人已散遗世而独立无眠唯今世上只一情字难懂,宁愿醉个千年,莫懂情……那该多好……咽下喉中那醇香的液体…………谁可以告诉她……怎么样才可以大醉一场……喜欢就收藏,看着还行就投票,欢迎留言。音在此真心的谢谢各位亲们……《战皇》音开新文了亲们,记得看哦,喜欢的就收啦,支持一下某音!!音的完结作品《凤戏红尘》《醉狂》:音好友的文文哦,决对的值得一看:《妃天大盗》无计春留住《弃妃当自强》春棠大人◇◆栖凤阁出品◆◇《醉狂》风恋音:《寐上总裁父》西座:《残帝傲妃》道貌岸然:《调教夫君》上官玥儿:《奉子休夫Ⅰ》回眸醉倾城:《邪妄总裁圈儿媳》失落的喧嚣:【栖凤阁】http://m.wkkk.net/g/qi1西座、风恋音、上官玥儿、道貌岸然、失落的喧嚣、回眸醉倾城在“女儿国”的联合圈子,欢迎大家的加入潇湘会员都可直接用会员号登陆“女儿国”,加入圈子
  • 开头

    开头

    本书是从80年代起就开始从事创作的青年作家徐名涛的早期中短篇小说集。全书收入的是作者80年代写就的中短篇,其中除《初恋》没有发表过以外,其余的均在全国的各在刊物上发表过。全书小说的立意、结构、选题都富有时代气息和青春活力,其中传达的人生思考和理念也颇有新意。
  • 异能种田:农门药香

    异能种田:农门药香

    作为怪物被研究多年的鱼笑,一朝死去,再次醒来,身在异世。手握灵力,绝世之貌,异瞳黑眸冷看众生。穷困潦倒,看她咸鱼翻身!奸人暗害,看她全数奉还!异能大开,另加外挂种田!斗恶霸,斗巫师,斗贱女!“你,你这是扮猪吃老虎!”“我本来就是老虎!”--情节虚构,请勿模仿